✨Tử Vi Hàm Số

Tử Vi Hàm Số Từ khi Trần Đoàn, đời nhà Tống, sáng lập ra khoa Tử -  Vi cho đến ngày nay, mặc dù nhân loại đã đi quá nửa thế kỷ hai mươi, nhưng khoa ngày càng thịnh hành trong xã hội Việt - Nam hiện t...

Tử Vi Hàm Số

Từ khi Trần Đoàn, đời nhà Tống, sáng lập ra khoa Tử -  Vi cho đến ngày nay, mặc dù nhân loại đã đi quá nửa thế kỷ hai mươi, nhưng khoa ngày càng thịnh hành trong xã hội Việt - Nam hiện thời.

Số môn đệ hay tài tử chuyên nghiệp cũng Trần Đoàn rất đông đảo. Thiên hạ tin Tử - Vi, hay xem Tử - Vi và còn ham học Tử - Vi. Số này xuất hiện ở mọi giai tầng xã hội, từ giới trí thức đến giới kinh doanh, từ cơ quan hành chính đến đơn vị quân sự, chưa kể những người hành nghề xem bói. Việc hâm mộ ngành bói toán sinh ra nhiều giai thoại rất kỳ thú. Có quân nhân xem Tử - Vi trước khi hành quân, có chính trị gia xem Tử - Vi trước khi quyết định chấp chánh, có thương gia xem Tử - Vi trước khi đầu tư, có thanh niên xem Tử - Vi trước khi lập gia đình. Hầu hết những ai hoài nghi về xã hội hiện hữu đều có khuynh hướng thăm dò số mạng của mình trong khoa bói toán, dường như để tìm nơi huyền bí một đường lối hành động thích nghi trước những bất trắc của thời cuộc.

Bắt mạch đúng thị hiếu này, báo chí tập chí, thi nhau khai thác đề tài Tử - Vi để thu hút độc giả. Nào là lý giải, từ lá số của Tổng Thống Thiệu, Thiếu Tướng Kỳ, Đại Tướng Minh cho đến lá số những minh tinh, ca sĩ Việt Nam hoặc nguyên thủ ngoại quốc, nào là quảng bá kiến thức Tử - Vi trên mặt báo hay thuật lại những thành tích khám phá của những nhà lý số trên cuộc đời kỳ thú của một số nhân vật tên tuổi. Một số không nhỏ nhật báo có đăng trang Tử - Vi mỗi ngày. Hết tuần báo "Số Mạng", lại đến tuần báo "Khoa Học Huyền Bí", tiếp nhau khai thác Tử - Vi và những khoa bói toán khác. Thị hiếu đó đã khiến cho các ông thầy bói đương nhiên trở thành những nhân vật tai mắt vô cùng quan trọng trong việc chỉ điểm nếp sống cho đại chúng. Điều này cũng thúc đẩy một số không nhỏ bốc sư đã chịu khó tìm học xem bói để sinh nhai.

Cuốn sách gồm những nội dung chính như sau:

PHẦN I: Thiếp lập và luận đoán là số

Chương 1 - Cách thức thiết lập lá số

Chương 2 - Qui tắc đoán luận lá số 

PHẦN II: THAM LUẬN ĐẠI CƯƠNG VỀ TỬ - VI

Chương 1 - Luận về các cung

Chương 2 -  Luận về các sao

Chương 3 -  Luận về Bản Mệnh, Cục, Cách

Chương 4 -  Luận về Âm Dương Ngũ Hành

Chương 5 -  Luận về Hàm Số Tử - Vi

Chương 6 - Luận về giá trị khoa Tử - Vi.

👁️ 31 | ⌚2025-09-06 23:21:30.607
VNĐ: 160,350
Mua hàng tại Shopee giảm thêm 30%
Tử Vi Hàm Số
Tử Vi Hàm Số Từ khi Trần Đoàn, đời nhà Tống, sáng lập ra khoa Tử - Vi cho đến ngày nay, mặc dù nhân loại đã đi quá nửa thế kỷ hai mươi, nhưng
Tử Vi Hàm Số (bìa cứng) Từ khi Trần Đoàn, đời nhà Tống, sáng lập ra khoa Tử - Vi cho đến ngày nay, mặc dù nhân loại đã đi quá nửa thế kỷ hai
Tử Vi Hàm Số Từ khi Trần Đoàn, đời nhà Tống, sáng lập ra khoa Tử - Vi cho đến ngày nay, mặc dù nhân loại đã đi quá nửa thế kỷ hai mươi, nhưng
Tử Vi Đẩu Số - Phân Tích Và Ứng Nghiệm Vận Số Tử vi đẩu số là một phương pháp đoán mệnh cổ xưa của người Trung Quốc với nội hàm bao gồm đầy đủ
Tử Vi (hay Tử Vi đẩu số) là một hình thức dự trắc vận mệnh đời người dựa trên cơ sở triết lý Kinh dịch với các thuyết âm dương, Ngũ hành, can bằng cách
Tử Vi (hay Tử Vi đẩu số) là một hình thức dự trắc vận mệnh đời người dựa trên cơ sở triết lý Kinh dịch với các thuyết âm dương, Ngũ hành, can bằng cách
Tử Vi Đẩu Số - Trung Châu Vận Đoán Tử vi đẩu số là một thành tố quan trọng của văn hóa thần bí Trung Quốc cổ đại. Bắt nguồn từ hệ thôhg tinh tú
Dự Đoán Đời Người Và Tứ Trụ Dự đoán theo 64 quẻ.Vận mệnh và thuật vận đoán,thuật chiêm tinh , thuật tử vi đẩu số ,thuật bát tự tử bình , thuật xem tướng, ấn
Thiệu Khang Tiết - Đệ Nhất Thần Số Đoán Mệnh: Tử vi đẩu số là một trong hai phái lớn của Mệnh lý học Trung Hoa cổ đại. Lý luận này xuất phát từ quan
Quick 12 là một trong những sản phẩm giá rẻ thuộc dòng máy đun và hâm nước pha sữa điện tử của Fatzbaby. Sở hữu những chức năng cơ bản như đun nước, khử clo
SÁCH: ĐẦU TƯ CHẤT LƯỢNG Mã sản phẩm: 8936067603965 Tác giả : Lawrence A. Cunning Ham - Torkell T. Edile & Patrick Hargreaves Dịch giả :Thu Uyên NXB: NXB Thanh Niên Kích thước : 14.5
Thông tin chi tiết Mã hàng 8935088538904 Tên nhà cung cấp Minh Lâm Tác giả Thiệu Khang Tiết NXB Hồng Đức Trọng lượng(gr) 1110 Kích thước 19 x 27 Số trang 431 Hình thức Bìa
Combo Tư Duy Như Những Nhà Đầu Tư Vĩ Đại + Bí Quyết Ra Quyết Định Dành Cho Lãnh Đạo + 7 Câu Hỏi Chiến Lược (Bộ 3 Cuốn) 1. Tư Duy Như Những Nhà
Tư Duy Như Những Nhà Đầu Tư Vĩ Đại Nhà xuất bản : Nhà Xuất Bản Tài Chính. Công ty phát hành : Pandabooks. Tác giả : Colon Nicholson. Kích thước : 16 x 24
Tài liệu trình bày về: Phương trình vi phân cấp 1; phương trình vi phân cấp 2; phương trình vi phân cấp cao, các hệ thức truy hồi và hàm Green; hệ phương trình
Cuốn Giáo trình Toán cáo cấp cho các nhà kinh tế - Phần II: Giải tích toán học (Tái bản lần thứ tư) gồm nội dung sau: Chương 1: Hàm số và giới hạn Chương
BẾP TỪ CHEFS EH-DIH666G | LINH KIỆN E.G.O - GERMANY | KÍNH TRẮNG | THIẾT KẾ SANG TRỌNG | HỆ ĐIỀU KHIỂN CẢM ỨNG SLIDER CONTROL DẠNG ẨN LINH HOẠT | AN TOÀN, BỀN BỈ
BẾP TỪ CHEFS EH-DIH666 | LINH KIỆN E.G.O - GERMANY | THIẾT KẾ SANG TRỌNG | HỆ ĐIỀU KHIỂN CẢM ỨNG SLIDER CONTROL DẠNG ẨN LINH HOẠT Thiết kế mặt kính Bếp từ Chefs EH-DIH666
Combo Sách Tâm Lý Học - Nghệ Thuật Giải Mã Hành Vi + Thay Đổi Cuộc Sống Với Nhân Số Học (Bộ 2Cuốn) Đổi Cuộc Sống Với Nhân Số Học Cuốn sáchThay đổi cuộc sống
BẾP TỪ KAFF KF-IG3001II | NHẬP KHẨU NGUYÊN CHIẾC TỪ MALAYSIA | THIẾT KẾ SANG TRỌNG | HỆ ĐIỀU KHIỂN CẢM ỨNG SLIDER CONTROL ĐỘC LẬP | AN TOÀN, BỀN BỈ VÀ TIẾT KIỆM ĐIỆN
12 Cách Biến Người Bạn Ghét Thành Đồng Minh Tác giả Toshihiro Kubo Dịch giả Phạm Hi Nguyên Thể loại Kỹ năng, tâm lý Kích thước 13 x 20 cm Nhà xuất bản Nhà xuất
How To Crack The Ielts Writing Test – Vol.1 là sự kế thừa tài tình của cuốn sách How to crack the IELTS Speaking Test Part 1 trên 3 phương diện: 1. Tác giả/ Chủ
Khởi Nghiệp Không Đợi Tuổi Nhà kinh tế học Mỹ Drucker, P.F cho rằng: “Tinh thần doanh nhân khởi nghiệp” là hành động của doanh nhân khởi nghiệp - người tiến hành việc biến những
Gồm nhiều lựa chọn kích thước, với các mã chậu sau: 1. Chậu Hwata B1 inox 304, loại 1 hộc 1 cánh, kích thước 78x43cm, sâu 20cm. 2. Chậu Hwata BD2 inox 304 , loại
Mình Tự Làm Được Đấy Là cuốn sách với những bước hướng dẫn đơn giản đi kèm hình ảnh sinh động sẽ giúp bé dễ dàng làm quen với những kĩ năng đơn giản trong
Chàng Túi Giấy Đang Yêu - Tập 1 Nhà xuất bản : Nhà Xuất Bản Dân Trí. Công ty phát hành : Yukibooks. Tác giả : Riko Amaebi. Kích thước : 13 x 18 x
Sách cung cấp cho bạn các bí quyết làm bài thi IELTS Reading với các nội dung trọng tâm như sau: 1. Phân tích tỉ mỉ các dạng đề giúp nắm được bí quyết giải
Nồi cơm điện Sharp KSH-D19V có kiểu dáng hiện đại, đơn giản mà cứng cáp, thân nồi màu trắng trang nhã Trang trí hình bông hoa 5 cánh sinh động, màu sắc trẻ trung, góp
Là dòng bếp điện từ thế hệ mới với kiểu dáng sang trọng cùng 02 vùng điều khiển cảm ứng slider (kết hợp với phím chạm linh hoạt). Bếp từ GH DUO-S2I là dòng bếp
Sách Người Ngoài Khung - Nghĩ Khác Và Làm Khác Để Bền Vững Tiến sĩ Nguyễn Thanh Mỹ là một doanh nhân và nhà khoa học nổi tiếng người Việt Nam. Ông là nhà phát
“Ra Quyết Định Dựa Trên Phân Tích Dữ Liệu” là tuyển tập kiến thức cập nhật, đúc rút từ các bài viết và nghiên cứu hàng đầu của Harvard Business Review. Cuốn sách nhấn mạnh
1. Năng Lượng Của Tiền - Bạn đã bao giờ có đủ tiền chưa? (Bạn có đủ thời gian hay sức khỏe không?) - Bạn có phải tích trữ tiền để cảm thấy an toàn
THÔNG TIN SẢN PHẨM Thương hiệu: Napoli Xuất xứ: Việt Nam Màu sắc: Nhiều màu Size: Phù hợp với vòng đầu 54cm – 58cm Khối lượng: 0.8 kg Chất liệu: Nhựa ABS MÀU ĐEN NHÁM
Sun Tzu's Art of War for Women: Strategies for Winning without Conflict Sun Tzu's classic treatiseThe Art of War has influenced countless generations—of men—when they find themselves on battlefields, in the office and in everyday
1.Đi Trốn “Đây là một vụ mất tích do nhà văn tưởng tượng ra hay là một hồi ức có thật? Bạn đọc khó lòng phân biệt, nhưng dù là hư cấu hay phi hư
- Mũ Bảo Hiểm FullFace Royal M136 là loại mũ bảo hiểm full face có thể che chắn vùng đầu, vùng tai và vùng mặt của người đội mũ một cách an toàn nhất. -
Tác giả: Tessa Bailey Nhà xuất bản: Piatkus Năm xuất bản: 2022 Công ty phát hành: 66Books Loại bìa: Bìa mềm Số trang: 316 Trang Ngôn ngữ: Tiếng Anh ISBN: 9780349435909 Kích thước: 12.4 x
Sách_Họa Sĩ Tí Hon - Chủ Đề Động Vật Bộ Túi Họa Sĩ Tí Hon là bộ sách tô màu gồm 6 tập : - Chủ Đề Đồ Dùng - Chủ Đề Côn Trùng -
[Tiểu Thuyết Đam Mỹ] Tu Tiên Ngôn Ngữ C - Tập 2 (Hello World) - Tác giả: Nhất Thập Tứ Châu - Dịch giả: Lạc Thần - Minh họa: WXY9697 - Thể loại: Tiểu thuyết
Trong cuốn sách Building Skills For The Toefl iBT - Writing (kèm CD Mp3), người học có thể tiếp xúc với các dạng câu hỏi sáng tạo tìm thấy trên iBT TOEFL ở mức độ
Tử Vi Hàm Số Từ khi Trần Đoàn, đời nhà Tống, sáng lập ra khoa Tử - Vi cho đến ngày nay, mặc dù nhân loại đã đi quá nửa thế kỷ hai mươi, nhưng
Tử Vi Hàm Số (bìa cứng) Từ khi Trần Đoàn, đời nhà Tống, sáng lập ra khoa Tử - Vi cho đến ngày nay, mặc dù nhân loại đã đi quá nửa thế kỷ hai
Tử Vi Hàm Số Từ khi Trần Đoàn, đời nhà Tống, sáng lập ra khoa Tử - Vi cho đến ngày nay, mặc dù nhân loại đã đi quá nửa thế kỷ hai mươi, nhưng
Tử Vi Hàm Số bìa cứng Từ khi Trần Đoàn, đời nhà Tống, sáng lập ra khoa Tử - Vi cho đến ngày nay, mặc dù nhân loại đã đi quá nửa thế kỷ hai
Tử Vi Hàm Số Từ khi Trần Đoàn, đời nhà Tống, sáng lập ra khoa Tử - Vi cho đến ngày nay, mặc dù nhân loại đã đi quá nửa thế kỷ hai mươi, nhưng
Tử Vi Hàm Số bìa cứng Từ khi Trần Đoàn, đời nhà Tống, sáng lập ra khoa Tử - Vi cho đến ngày nay, mặc dù nhân loại đã đi quá nửa thế kỷ hai
Tử Vi Hàm Số bìa cứng Từ khi Trần Đoàn, đời nhà Tống, sáng lập ra khoa Tử - Vi cho đến ngày nay, mặc dù nhân loại đã đi quá nửa thế kỷ hai
Tử Vi Đẩu Số - Phân Tích Và Ứng Nghiệm Vận Số Tử vi đẩu số là một phương pháp đoán mệnh cổ xưa của người Trung Quốc với nội hàm bao gồm đầy đủ
Tử Vi (hay Tử Vi đẩu số) là một hình thức dự trắc vận mệnh đời người dựa trên cơ sở triết lý Kinh dịch với các thuyết âm dương, Ngũ hành, can bằng cách
Tử Vi (hay Tử Vi đẩu số) là một hình thức dự trắc vận mệnh đời người dựa trên cơ sở triết lý Kinh dịch với các thuyết âm dương, Ngũ hành, can bằng cách
Tử Vi Đẩu Số - Trung Châu Vận Đoán Tử vi đẩu số là một thành tố quan trọng của văn hóa thần bí Trung Quốc cổ đại. Bắt nguồn từ hệ thôhg tinh tú
Dự Đoán Đời Người Và Tứ Trụ Dự đoán theo 64 quẻ.Vận mệnh và thuật vận đoán,thuật chiêm tinh , thuật tử vi đẩu số ,thuật bát tự tử bình , thuật xem tướng, ấn
Trong toán học, một **hàm số** hay gọi ngắn là **hàm** (Tiếng Anh: _function_) là một loại ánh xạ giữa hai tập hợp số liên kết mọi phần tử của tập số đầu tiên với
thumb|220x124px | right | Giới hạn của hàm số f(x) khi x tiến tới a
Mặc dù hàm số không được định nghĩa tại , khi tiến
nhỏ| Hàm [[sin và tất cả các đa thức Taylor của nó đều là các hàm lẻ. Hình ảnh này cho thấy \sin(x) và các xấp xỉ Taylor của nó, các đa thức bậc 1,
Trong toán học, một **hàm số sơ cấp** là một hàm của một biến số và là tổ hợp của một số hữu hạn các phép toán số học , hàm mũ, logarit, hằng số
Trong toán học, một **hàm số cơ bản** là một hàm một biến số và là tổ hợp của một số hữu hạn các phép toán số học , hàm mũ, logarit, hằng số và
Trong lý thuyết số, **hàm** **số học**, hoặc **hàm số lý thuyết số** đối với hầu hết các tác giả nói đến bất kỳ hàm _f_ (_n_) nào có miền là số nguyên dương và
**Đồ thị của hàm số** _f_ trong toán học là tập hợp tất cả các cặp có thứ tự . Nếu đầu vào _x_ là một cặp có thứ tự các số thực thì đồ
Trong toán học, một **hàm số tự nghịch đảo**, là một hàm số f mà là hàm ngược của chính nó: : với mọi x trong tập xác định của f. ## Tính chất chung
thumb|right|300 px|Đồ thị hàm số của logarit tự nhiên. **Logarit tự nhiên** (còn gọi là logarit Nêpe) là logarit cơ số e do nhà toán học John Napier sáng tạo ra. Ký hiệu là: ln(x),
phải|nhỏ|210x210px|Đồ thị của một hàm số bậc ba với 3 [[Nghiệm số|nghiệm số thực (tại đó đường đồ thị cắt trục hoành—thỏa mãn ). Hình vẽ cho thấy hai điểm cực trị. Phương trình của
**Cực trị của hàm số** là giá trị mà hàm số đổi chiều biến thiên khi qua đó. Trong hình học, nó biểu diễn khoảng cách lớn nhất từ điểm này sang điểm kia và
Thiệu Khang Tiết - Đệ Nhất Thần Số Đoán Mệnh: Tử vi đẩu số là một trong hai phái lớn của Mệnh lý học Trung Hoa cổ đại. Lý luận này xuất phát từ quan
[[Đồ thị hàm sin]] [[Đồ thị hàm cos]] [[Đồ thị hàm tan]] [[Đồ thị hàm cot]] [[Đồ thị hàm sec]] [[Đồ thị hàm csc]] Trong toán học nói chung và lượng giác học nói riêng,
nhỏ|[[Đồ thị của hàm số (màu đen) và tiếp tuyến của nó (màu đỏ). Hệ số góc của tiếp tuyến bằng đạo hàm của hàm đó tại tiếp điểm (điểm được đánh dấu).]] Trong toán
Trong toán học, một **hàm liên tục** hay **hàm số liên tục** là một hàm số không có sự thay đổi đột ngột trong giá trị của nó, gọi là những điểm gián đoạn. Chính
**Lý thuyết thứ tự** là một nhánh trong toán học nghiên cứu thuật ngữ thứ tự bằng cách sử dụng các quan hệ hai ngôi. Nó cho một khung hình thức để có thể mô
**Hàm số bậc hai** là hàm số có dạng ax^2+bx+c=y trong đó a,b,c là các hằng số và {\displaystyle (a\neq 0)} . Hệ số hoàn toàn có thể ở y. x và y lần lượt
thumb|right|[[Đường cong Tschirnhausen là một ví dụ về đường cong đại số bậc ba.]] Trong toán học, **đường cong phẳng đại số affin** là tập nghiệm của đa thức hai biến. **đường cong phẳng đại
Trong toán học, thuật ngữ " **phiếm hàm** " (danh từ, tiếng Anh là **functional**) có ít nhất 3 nghĩa sau : nhỏ|451x451px|Phiêm hàm [[Chiều dài cung - Arc length|chiều dài cung đi từ miền
Trong toán học, **hàm hợp** là một phép toán nhận hai hàm số và và cho ra một hàm số sao cho . Trong phép toán này, hàm số và được **hợp** lại để tạo
Trong toán học, **hàm softmax**, hoặc **hàm trung bình mũ**, Biệt thức tuyến tính phân tích nhiều lớp, Phương pháp phân loại Bayes, và mạng neuron. Đặc biệt, trong hồi quy logistic đa biến và
Trong tính toán lượng tử, **thuật toán lượng tử** là một thuật toán chạy bằng mô hình thực tế của tính toán lượng tử, mô hình được sử dụng phổ biến nhất là mô hình
thumb|Minh họa hàm tuần hoàn với chu kỳ P. Trong toán học, một **hàm tuần hoàn** là hàm số lặp lại giá trị của nó trong những khoảng đều đặn hay chu kỳ. Ví dụ
Một hàm được định giá trị vectơ, cũng được gọi là **hàm vectơ**, là một hàm toán học của một hoặc nhiều biến với miền giá trị của nó là một bộ của những vectơ
thumb|Đồ thị của hàm đồng nhất trên trường số thực Trong toán học, **hàm đồng nhất** (), còn gọi là **quan hệ đồng nhất**, **ánh xạ đồng nhất** hay **phép biến đổi đồng nhất**, là
thumb|right|[[Hàm Lôgit]] thumb|Biểu đồ của [[hàm lỗi]] **Hàm sigmoid** là một hàm số có dạng đường cong hình "S" hay còn gọi là ** đường cong sigmoid**. Một ví dụ phổ biến của một hàm
Trong toán học, **hàm von Mangoldt** là hàm số học được theo tên nhà toán học Đức Hans von Mangoldt. Nó là một trong những ví dụ quan trọng về hàm số học không nhân
right|thumb|Đạo hàm bậc hai của một [[hàm số bậc hai là hằng số.]] Trong giải tích, **đạo hàm bậc hai** của một hàm số là đạo hàm của đạo hàm của . Có thể nói
Trong toán học và vật lý, **toán tử Laplace** hay **Laplacian**, ký hiệu là \Delta\,  hoặc \nabla^2  được đặt tên theo Pierre-Simon de Laplace, là một toán tử vi phân, đặc biệt trong các toán
Trong toán học, **hàm Dirichlet** là hàm chỉ thị \mathbf{1}_\Q của tập số hữu tỉ \Q, với \mathbf{1}_\Q(x) = 1 khi là số hữu tỉ và \mathbf{1}_\Q(x) = 0 khi không phải là số hữu
Trong toán học, **hàm đếm số nguyên tố** là hàm số đếm số lượng các số nguyên tố nhỏ hơn hoặc bằng với một số thực _x._ Nó được ký hiệu là (_x_) (không liên
phải|nhỏ|246x246px| Đồ thị của một đa thức bậc 5, với 3 nghiệm thực và 4 [[điểm cực trị. ]] Trong đại số, **hàm số bậc năm** là hàm số có dạng : g(x)=ax^5+bx^4+cx^3+dx^2+ex+f,\, trong đó
🍲 GIA VỊ HẦM THỊT, CHÂN GIÒ CAY TỨ XUYÊN 🍲 - Món hầm này dùng bắp bò, thịt vịt hay móng lợn, hầm rất lâu đến khi thịt thật là mềm. - Thịt hầm
thumb|Các phần số _n_ với hạng lớn nhất _k_ Trong số học, sự **phân hoạch** một số nguyên dương _n_ là cách viết số đó dưới dạng tổng của các số nguyên dương. Hai cách
SET GIA VỊ HẦM GÀ NHÂN SÂM HÀN QUỐC - Xuất xứ: Hàn Quốc- Trọng lượng: 100g Set gồm: táo đỏ, nhân sâm, hoàng kỳ, cát căn và 1 số nguyên liệu thảo dược khác,
thumb|right|Hàm lồi trên một đoạn khoảng cách. right|thumb|Một hàm (màu đen) là lồi nếu và chỉ nếu vùng phía trên [[đồ thị của hàm số của nó (màu xanh) là một tập lồi.]] thumb|Một đồ
phải|Sơ đồ hàm Weierstrass trong khoảng -2..2. Hàm có định dạng [[phân dạng, khi phóng to bất kỳ vùng tương tự vòng đỏ đều có định dạng tương tự cả sơ đồ chung.]] Trong toán
**Số hoàn hảo** (hay còn gọi là **số hoàn chỉnh**, **số hoàn thiện** hoặc **số hoàn thành**) là một số nguyên dương mà tổng các ước nguyên dương thực sự của nó (các số nguyên